Let $\mathbb{A_0,A_1,B_0,B_1}$ be logics.
Let $\mathcal{R}_0(\mathbb{A_0,B_0})$ and $\mathcal{R}_1(\mathbb{A_1,B_1})$ be meta relations.
Let $[\![\mathbb{A}]\!]:\mathbb{A_0\to A_1}$ and $[\![\mathbb{B}]\!]:\mathbb{B_0\to B_1}$ be flow types.
A flow relation, or horizontal transformation,
is a matrix functor $[\![\mathcal{R}]\!]: \mathcal{R_0\to R_1}$
with matrix transformations, left join and right join
which cohere with the associators
and the unitors.