Just as a matrix category is a bimodule of weave double categories, a matrix profunctor is a bimodule of weave vertical profunctors, which coheres with the associators and unitors of the source and target matrix categories.
Let $\mathbb{X,Y,A,B}$ be categories, $\mathcal{Q}(\mathbb{X,Y})$ and $\mathcal{R}(\mathbb{A,B})$ be matrix categories.
Let $f:\mathbb{X}\,|\,\mathbb{A}$ and $g: \mathbb{Y}\,|\,\mathbb{B}$ be profunctors, determining weave profunctors $f \Leftarrow \langle f\rangle\Rightarrow f$ and $g\Leftarrow \langle g\rangle \Rightarrow g$.
A matrix profunctor $i(f,g): \mathcal{Q}(\mathbb{X,Y})\,|\, \mathcal{R}(\mathbb{A,B})$ is a span profunctor which forms a bimodule from $\langle f\rangle$ to $\langle g\rangle$, that coheres with the associators and unitors of $\mathcal{Q}$ and $\mathcal{R}$.
Hence a matrix profunctor is a span profunctor
with precompose action by $\langle f\rangle$ and postcompose action by $\langle g\rangle$
https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXGxhbmdsZVxcbWF0aGJie1h9XFxyYW5nbGUgXFxhc3QgXFxtYXRoY2Fse1F9Il0sWzAsMiwiXFxsYW5nbGUgXFxtYXRoYmJ7QX1cXHJhbmdsZVxcYXN0IFxcbWF0aGNhbHtSfSJdLFsyLDAsIlxcbWF0aGNhbHtRfSJdLFsyLDIsIlxcbWF0aGNhbHtSfSJdLFswLDIsIlxcb2RvdF9cXG1hdGhiYntYfSIsMV0sWzEsMywiXFxvZG90X1xcbWF0aGJie0F9IiwxXSxbMiwzLCJpIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiYmFycmVkIn19fV0sWzAsMSwiXFxsYW5nbGUgZlxccmFuZ2xlIFxcYXN0IGkiLDIseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJiYXJyZWQifX19XSxbNyw2LCJcXG9kb3RfZiIsMSx7InNob3J0ZW4iOnsic291cmNlIjoyMCwidGFyZ2V0IjoyMH19XV0=&embed
https://q.uiver.app/#q=WzAsNCxbMiwwLCJcXGxhbmdsZVxcbWF0aGJie1l9XFxyYW5nbGUgXFxhc3QgXFxtYXRoY2Fse1F9Il0sWzIsMiwiXFxsYW5nbGUgXFxtYXRoYmJ7Qn1cXHJhbmdsZVxcYXN0IFxcbWF0aGNhbHtSfSJdLFswLDAsIlxcbWF0aGNhbHtRfSJdLFswLDIsIlxcbWF0aGNhbHtSfSJdLFswLDIsIlxcb2RvdF9cXG1hdGhiYntZfSIsMV0sWzEsMywiXFxvZG90X1xcbWF0aGJie0J9IiwxXSxbMiwzLCJpIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiYmFycmVkIn19fV0sWzAsMSwiaVxcYXN0IFxcbGFuZ2xlIGdcXHJhbmdsZSIsMCx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImJhcnJlZCJ9fX1dLFs3LDYsIlxcb2RvdF9nIiwxLHsic2hvcnRlbiI6eyJzb3VyY2UiOjIwLCJ0YXJnZXQiOjIwfX1dXQ==&embed
which are natural with respect to the associators
and natural with respect to the unitors.
We summarize the concept of matrix profunctor, ordered by dimension.
dim | concept | structure | syntax |
---|---|---|---|
2 | matrix profunctor | span profunctor | $i(f,g):\mathcal{Q}(\mathbb{X,Y})\, |
3 | left action | span transformation | $\odot_f: \langle f\rangle |
\ast i\Rightarrow i$ | |||
right action | span transformation | $\odot_g: i\ast \langle g\rangle\Rightarrow i$ | |
4 | c.assoc. coherence | equality | $\overline{\mathrm{x}}\odot (Q\odot \overline{\mathrm{y}}) |
\rightrightarrows (\overline{\mathrm{a}}\odot R)\odot \overline{\mathrm{b}}$ | |||
l.assoc. coherence | equality | $\mathrm{(\overline{x}_1\circ \overline{x}_2)}\odot Q\rightrightarrows \mathrm{\overline{a}_1\odot (\overline{a}_2}\odot R)$ | |
r.assoc. coherence | equality | $Q\odot (\mathrm{\overline{y}_1\circ \overline{y}_2})\rightrightarrows (R\odot \mathrm{\overline{b}_1)\odot \overline{b}_2}$ | |
l.unit coherence | equality | $\mathrm{\overline{id}.X}\odot Q\rightrightarrows \mathrm{\overline{id}.A}\odot R$ | |
r.unit coherence | equality | $Q\odot \mathrm{\overline{id}.Y}\rightrightarrows R\odot \mathrm{\overline{id}.B}$ |
<aside> ⚠️ The elements of $i$ can be understood as inferences — however, the “collage” of a matrix profunctor is not quite a logic:
the processes of $f$ and $g$ do not act on $\mathcal{Q}$ and $\mathcal{R}$, i.e. they do not bend in the visual language.
</aside>
We only know that the actions of $\mathcal{Q}(\mathbb{X,Y})$ and $\mathcal{R}(\mathbb{A,B})$ are natural with respect to the elements of $i$, i.e. the bends can “slide through”: