Matrix categories and matrix functors, matrix profunctors and matrix transformations form $\mathbb{M}\mathrm{at}\mathbb{C}\mathrm{at}$, a bifibrant double category which is fibered over $\mathbb{C}\mathrm{at}\times\mathbb{C}\mathrm{at}$.
To complete the logic of matrix categories, we define its relation composition: sequential composition of matrix profunctors.
<aside> 🌱 All of this can be visualized — it just hasn’t been drawn yet!
</aside>
\mathbb{C}\mathrm{at}$ over $\mathbb{C}\mathrm{at}\times \mathbb{C}\mathrm{at}$