Let $\mathbb{X,A}$ be logics.
A meta process or vertical profunctor is a vertical monad between pseudomonads $\mathbb{X}$ and $\mathbb{A}$ in MatCat.
This is
a profunctor $\underline{f}:\underline{\mathbb{X}} \,|\, \underline{\mathbb{A}}$ of processes and
a matrix profunctor of inferences
$f(\underline{f},\underline{f}): \mathbb{X}(\underline{\mathbb{X}},\underline{\mathbb{X}})\, |\, \mathbb{A}(\underline{\mathbb{A}}, \underline{\mathbb{A}})$
parallel composition
$\circ: f\otimes f\Rightarrow f$
parallel identity
$\mathrm{id}: \underline{f}\Rightarrow f$
so the associators and unitors of $\mathbb{X,A}$ are natural with respect to $f$.
associator coherence
$(\mathbb{X} \circ \mathbb{X}) \circ \mathbb{X} \rightrightarrows \mathbb{A}\circ (\mathbb{A}\circ \mathbb{A})$
left unitor coherence
$\mathrm{id}.\underline{\mathbb{X}}\circ \mathbb{X} \rightrightarrows \mathrm{id}.\underline{\mathbb{A}}\circ \mathbb{A}$
right unitor coherence
$\mathbb{X}\circ \mathrm{id}.\underline{\mathbb{X}}\rightrightarrows \mathbb{A}\circ \mathrm{id}.\underline{\mathbb{A}}$